
1

Generating Unit Tests
with Automated Source Code Analysis

2

Agenda
1. Background Information (5 min)

2. Demonstration (10 min)

3

Symflower Company

● Startup based in Linz, Austria, EU

● Vision: Complete automation of software QA

Evelyn Haslinger Markus Zimmermann Currently a team of 13

Founders Team

4

Technology and Product

Symflower completely automatically finds, writes, runs
and analyses all relevant unit tests revealing bugs,
security issues and performance problems.

➞ Reduce development and maintenance time

➞ Increase quality of your software and tests

5

Technology and Product

Fuzzing

● Coverage depends on luck

Boundary value analysis

● Gives very low coverage

Our technology to generate test candidates:

○ Symbolic execution (SE)
■ Checks every functionality
■ Computes targeted test cases
■ Reaches highest test coverage
■ Finds bugs automatically

Alternatives:

6

Symbolic Execution

Executing a program symbolically means, that rather than operating on concrete values, one is operating on
symbolic values considering all possible execution paths at once. Constraint solvers are used to get concrete
values fulfilling the constraints that describe a path.

func f(a int, b int) int {

 x, y := 1, 0

 if a != 0 {

 y = x + 3

 if b == 0

 x = 2 * (a + b)

 }

 return (a + b) / (x - y)

}

Path constraints

Assignments

Path split

Solution from
constraint solver

Request to
Constraint solver

7

Symbolic Execution

Executing a program symbolically means, that rather than operating on concrete values, one is operating on
symbolic values considering all possible execution paths at once. Constraint solvers are used to get concrete
values fulfilling the constraints that describe a path.

x, y := 1, 0
x = 1, y = 0
a = ? , b = ?

func f(a int, b int) int {

 x, y := 1, 0

 if a != 0 {

 y = x + 3

 if b == 0

 x = 2 * (a + b)

 }

 return (a + b) / (x - y)

}

Path constraints

Assignments

Path split

Symbolic execution to
find divisions by zero:

Solution from
constraint solver

Request to
Constraint solver

8

Symbolic Execution

Executing a program symbolically means, that rather than operating on concrete values, one is operating on
symbolic values considering all possible execution paths at once. Constraint solvers are used to get concrete
values fulfilling the constraints that describe a path.

x, y := 1, 0

if a != 0

x = 1, y = 0
a = ? , b = ?

x-y == 0 ?

no

x = 1, y = 0, a = 0
b = ?
x-y == 0?

func f(a int, b int) int {

 x, y := 1, 0

 if a != 0 {

 y = x + 3

 if b == 0

 x = 2 * (a + b)

 }

 return (a + b) / (x - y)

}

Path constraints

Assignments

Path split

Symbolic execution to
find divisions by zero:

Solution from
constraint solver

→ Unsolvable

Request to
Constraint solver

9

Symbolic Execution

Executing a program symbolically means, that rather than operating on concrete values, one is operating on
symbolic values considering all possible execution paths at once. Constraint solvers are used to get concrete
values fulfilling the constraints that describe a path.

x, y := 1, 0

if a != 0

x = 1, y = 0
a = ? , b = ?

x-y == 0 ?y = x + 3

yes no

x = 1, y = 0, a = 0
b = ?
x-y == 0?

x = 1, a !=0 b = ?
y = x + 3 = 4

func f(a int, b int) int {

 x, y := 1, 0

 if a != 0 {

 y = x + 3

 if b == 0

 x = 2 * (a + b)

 }

 return (a + b) / (x - y)

}

Path constraints

Assignments

Path split

Symbolic execution to
find divisions by zero:

Solution from
constraint solver

→ Unsolvable

Request to
Constraint solver

10

Symbolic Execution

Executing a program symbolically means, that rather than operating on concrete values, one is operating on
symbolic values considering all possible execution paths at once. Constraint solvers are used to get concrete
values fulfilling the constraints that describe a path.

x, y := 1, 0

if a != 0

x = 1, y = 0
a = ? , b = ?

x-y == 0 ?y = x + 3

if b == 0

x = 2 * (a + b) x-y == 0 ?

x-y == 0 ?

yes no

yes no

x = 1, y = 0, a = 0
b = ?
x-y == 0?

x = 1, a !=0 b = ?
y = x + 3 = 4

x = 1, y = 4
a != 0, b != 0
x - y == 0?

x = 2 * (a + b), y = 4
a != 0, b = 0

x = 2 * (a + b), y = 4
a != 0, b = 0
x - y == 0?

func f(a int, b int) int {

 x, y := 1, 0

 if a != 0 {

 y = x + 3

 if b == 0

 x = 2 * (a + b)

 }

 return (a + b) / (x - y)

}

Path constraints

Assignments

Path split

Found division by zero
with a = 2 and b = 0

Symbolic execution to
find divisions by zero:

Solution from
constraint solver→ Solvable with a = 2, b = 0

→ Unsolvable

→ Unsolvable

Request to
Constraint solver

11

Symflower the Product

➔ Let’s take a look

https://production.symflower.com

12

Markus Zimmermann mz@symflower.comEvelyn Haslinger eh@symflower.com

